Lecture 22

Binomial Theorem and Binomial Coefficients

Binomial Theorem

Binomial coefficients

Binomial Theorem: For all non-negative integer n,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Proof: Can be done using induction. Skipped.

Identities on Binomial Coefficient

Theorem: For all non-negative integers n,

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}+\ldots+(-1)^{n}\binom{n}{n}=0
$$

Proof: Just put $x=-1$ and $y=1$ in binomial theorem.

Theorem: For all non-negative integers n,

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

We will do a lot of proofs of this sort.
Proof: Just put $x=y=1$ in binomial theorem.
Alternative Proof: Both sides are counting the number of subsets $[n]$.

Identities on Binomial Coefficient

Theorem: For all non-negative integers n and k,

Proof: $(k+1)$-element subsets of $[n+1]$ can be divided into two types:

- Subsets that contain $n+1$.
- Subsets that do not contain $n+1$.

Both sides of the equation are counting the same thing in different ways.

Pascal Triangle

nth row, starting from $n=0$, is listing out $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}$

Identities on Binomial Coefficient

$$
\begin{aligned}
& \#(k+1) \text {-element } \\
& \text { subsets of }[n+1],
\end{aligned}
$$

$$
\text { where } k+2 \text { is the highest. }
$$

$$
\begin{aligned}
& \quad \#(k+1) \text {-element } \\
& \text { subsets of }[n+1] \text {, } \\
& \text { where } n+1 \text { is the highest. }
\end{aligned}
$$

Theorem: For all non-negative integers n and k,

$$
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\ldots+\binom{n-1}{k}+\binom{n}{k}=\binom{n+1}{k+1}
$$

$$
\#(k+1) \text {-element } \quad \#(k+1) \text {-element }
$$

\# $(k+1)$-element subsets of $[n+1]$, where $k+1$ is the highest.

$$
\text { \# (} k+1 \text {)-element }
$$

$$
\text { subsets of }[n+1] \text {, }
$$

Identities on Binomial Coefficient

Theorem: For all non-negative integers n,

$$
\sum_{k=1}^{n} k\binom{n}{k}=n .2^{n-1}
$$

Proof: Both sides are counting the number of ways to choose a committee among n people and a president from the committee.
On the left side, we choose k-member committees in $\binom{n}{k}$ ways, its president in k ways, and then sum all the ways.

On the right side, we choose a president in n ways and then the rest of the committee in 2^{n-1}.

Idea: Multinomial Theorem

$$
(x+y+z)^{3}=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x^{2} z+3 y^{2} z+3 y^{2} x+3 z^{2} x+3 z^{2} y+6 x y z
$$

Why $x^{2} z$ has 3 as a coefficient?

\# times $x^{2} z$ appears in expansion $=\#$ ways we can pick $2 x$ and $1 z=\frac{3!}{2!1!}=3$

Multinomial Theorem

Multinomial Theorem: For all non-negative integer n and k,

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum_{a_{1}, a_{2}, \ldots, a_{k}}\binom{n}{a_{1}, a_{2}, \ldots, a_{k}} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}
$$

where the sum is taken over all k-tuples of $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{i} \in \mathbb{N}$ and $n=\sum_{i=1}^{k} a_{i}$.

